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Abstract

As the global demand for seafood increases, research into the genetic basis of traits that can increase aquaculture production is critical.
The eastern oyster (Crassostrea virginica) is an important aquaculture species along the Atlantic and Gulf Coasts of the United States, but
increases in heavy rainfall events expose oysters to acute low salinity conditions, which negatively impact production. Low salinity survival is
known to be a moderately heritable trait, but the genetic architecture underlying this trait is still poorly understood. In this study, we used
ddRAD sequencing to generate genome-wide single-nucleotide polymorphism (SNP) data for four F2 families to investigate the genomic
regions associated with survival in extreme low salinity (<3). SNP data were also used to assess the feasibility of genomic selection (GS) for
improving this trait. Quantitative trait locus (QTL) mapping and combined linkage disequilibrium analysis revealed significant QTL on east-
ern oyster chromosomes 1 and 7 underlying both survival and day to death in a 36-day experimental challenge. Significant QTL were lo-
cated in genes related to DNA/RNA function and repair, ion binding and membrane transport, and general response to stress. GS was in-
vestigated using Bayesian linear regression models and prediction accuracies ranged from 0.48 to 0.57. Genomic prediction accuracies
were largest using the BayesB prior and prediction accuracies did not substantially decrease when SNPs located within the QTL region on
Chr1 were removed, suggesting that this trait is controlled by many genes of small effect. Our results suggest that GS will likely be a viable
option for improvement of survival in extreme low salinity.
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Introduction
Food insecurity is a global crisis that affects more than a quarter

of our population worldwide, but aquaculture provides hope for

meeting increasing food demands (FAO et al. 2019). Globally,

aquaculture has out-produced capture fisheries for a decade

(FAO 2018b), and as of 2018, is the fastest growing sector of food

production worldwide (FAO 2018a). Marine and coastal aquacul-

ture, specifically, comprised 36% of total aquaculture production

in 2016, and nearly 60% of this production came from marine bi-

valve aquaculture (FAO 2018a). Over the last 20 years, the

Chesapeake Bay, located on the eastern seaboard of the United

States, has seen substantial increases in eastern oyster

(Crassostrea virginica) production from aquaculture (Hudson 2018;

van Senten et al. 2019). As of 2019, there were an estimated 429

total leases comprising 6930 total acres for eastern oyster aqua-

culture in the Maryland-portion of the Bay (van Senten et al.

2019). Oyster harvest increased 115% from 2010 to 2018, and the

Maryland shellfish industry was estimated to have an economic

impact of over $8 million (van Senten et al. 2019). The oyster in-

dustry provides a substantial input to the economy of Maryland

and also provides valuable employment opportunities in coastal
areas where the industry is limited.

While eastern oyster aquaculture is expanding in the
Chesapeake Bay, the highly variable salinity gradient is one of
the most prominent environmental factors hindering produc-
tion for aquaculture operations. Harvest numbers, economic
input, and employment associated with the shellfish aquacul-
ture sector in Maryland were substantially lower in 2018 com-
pared to 2017, primarily due to the abnormally low salinity in
the Bay resulting from the large inflow of freshwater from
heavy rainfall (van Senten et al. 2019; NOAA National Centers
for Environmental Information 2021). Oyster aquaculture in
the upper Bay is periodically faced with the threat of extreme
low salinity (<3) resulting from heavy rainfall associated with
large storm events. Large mortality events from extreme low
salinity (<5) have been observed in estuarine and coastal sys-
tems globally (reviewed in Du et al. 2021), such as in the
Chesapeake Bay (Engle 1946; Andrews et al. 1959; Southworth
et al. 2017), in the Gulf of Mexico (Butler 1949, 1952; Gledhill
et al. 2020; Du et al. 2021), and in northern California (Cheng
et al. 2015). A lower optimal salinity (�9–16) has recently been
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proposed for eastern oyster populations in Louisiana estuaries
where freshwater input dominates the hydrodynamics of the
system (e.g., La Peyre et al. 2016; Rybovich et al. 2016; Lowe et al.
2017), which is most likely the case for many locations in the
northern portion of the Chesapeake Bay. Within the
Chesapeake Bay, a “low salinity” oyster line currently exists
(salinity �6–15; Allen et al. 2021), but, growth and survival at
low salinity (�6–15) is arguably different than growth and sur-
vival at extreme low salinity (<3) (McCarty et al. 2020).

Survival under salinity stress was recently determined to be
a heritable trait in the eastern oyster. Survival in high salinity
(�15–23) is a distinct trait from survival in low salinity (�6–15)
(Allen et al. 2021), and survival in both low salinity (�6–15) and
in extreme low salinity (<3) have proven to be moderately heri-
table (salinity �6–15 h2¼ 0.34; salinity < 3 h2¼�0.4; McCarty
et al. 2020). However, genomic (marker-based) analyses of low
salinity tolerance in oysters have not been conducted, and
knowledge of the genetic architecture of a trait is important
when establishing an effective breeding program. Previous ge-
nomic investigations of aquaculture traits in the eastern oyster
have been focused primarily on resistance to Perkinsus marinus,
the causative agent of Dermo disease (Yu and Guo 2006). In
other aquaculture species, identified quantitative trait loci
(QTL) have successfully been incorporated into marker-
assisted selection (MAS) programs, for example, for disease re-
sistance in Japanese flounder (Fuji et al. 2007), Atlantic salmon
(Houston et al. 2008; Moen et al. 2009, 2015), and Rainbow trout
(Liu et al. 2018). However, MAS is typically ineffective for most
production traits due to their highly polygenic nature, meaning
the trait is controlled by many loci of small effect (Zenger et al.
2019; Houston et al. 2020). On the other hand, genomic selec-
tion (GS), or the selection of individuals based on the combined
genetic effect of all relevant genome-wide polymorphisms
(Meuwissen et al. 2001), may be more effective for polygenic
traits and produces higher accuracies of selection and higher
rates of genetic gain compared to traditional, exclusively per-
formance and family-based, selective breeding programs
(Ødegård et al. 2014; Zenger et al. 2019; Houston et al. 2020).
Implementation of GS for aquaculture species was once limited
to well-studied species such as Atlantic salmon and rainbow
trout (Ødegård et al. 2014; Vallejo et al. 2017; Zenger et al. 2019),
but recent advances in genomic technology and resources have
increased the accessibility of GS for many aquaculture species
(Houston et al. 2020). The effectiveness of MAS or GS for ad-
vancing breeding depends on the genetic architecture of a trait,
which is currently unknown for extreme low salinity survival
in the eastern oyster.

In this study, we performed QTL mapping and combined
linkage disequilibrium (LD) analyses in four F2 oyster families
exposed to an acute low salinity experimental challenge (<3).
Tissue was collected from all individuals, both dead and alive,
and genome-wide single-nucleotide polymorphisms (SNPs)
generated with ddRADseq (Peterson et al. 2012) were used to in-
vestigate genomic regions associated with survival and day to
death. The potential for using GS to advance breeding of low
salinity survival was also investigated by calculating genomic
prediction accuracies via cross-validation for several Bayesian
linear regression models. This work provides initial insight into
the genetic architecture underlying survival in acute low salin-
ity (<3) for the eastern oyster and will help determine whether
MAS or GS may provide a better approach for selective breeding
of this trait.

Materials and methods
F2 breeding design
In 2014, 10 F1 hybrid families were generated by the Aquaculture
Genetics and Breeding Technology Center (ABC) at the Virginia
Institute of Marine Science from crosses between individuals
from the low salinity and high salinity family breeding lines
(Allen et al. 2021). In 2015, eight F2 families were made by ABC
from full-sibling pair-matings within the F1 families, and all lar-
vae and seed were reared following standard VIMS protocols
(Allen et al. 2021). Seed reached 1=4 to 1=2 inch by September and
were then transferred to the Horn Point Laboratory (HPL; MD,
USA). Once at Horn Point Laboratory, seed were overwintered in
the HPL boat basin until March of 2016 when they were put into
3/16-inch vexar mesh bags in a rack and bag setup on the inter-
tidal beach at the Horn Point demonstration farm. Seed were
grown in a rack and bag system and checked monthly for biofoul-
ing from March to November 2016. From 2016 to 2018, oysters
were moved to the HPL boat basin for overwintering from
November to March, and then returned to the intertidal demon-
stration farm from March to November. In March 2018, oysters
were transferred to SEAPAVR baskets and deployed on an
Australian Longline system in the intertidal zone of the demon-
stration farm at the Horn Point Laboratory until being brought
into the laboratory in May 2018 for experimentation. Oysters
were �3 years old and averaged 92.37 mm 6 0.44 when experi-
mentation began on May 28, 2018.

Acute low salinity experimental challenge
Oysters from the eight F2 families (N¼ 70–140 oysters per family)
were randomly divided into equal-sized replicate plastic baskets
depending on total number of oysters for each family. Replicate
baskets were secured to the bottom of custom-made Taylor floats
and submerged in 6-ft diameter tanks (�1800 L) located indoors
at the Horn Point Laboratory in Cambridge, Maryland, USA.
Oysters were exposed to acute low salinity (<3) following a very
similar experimental design to McCarty et al. (2020): a 1-week ac-
climation period at ambient conditions followed by a 2-day salin-
ity step-down and simultaneous temperature increase.
Continuously flowing Choptank River water (salinity �7–11) and
oxygenated, heated well water (salinity 0) were mixed by hand to
maintain salinity 2.3 6 0.13 and temperature 26.9�C 6 0.07 for
36 days, from May 28 to July 5. A salinity lower than a prior chal-
lenge was chosen in hopes of increasing mortality during the ex-
perimental timeframe, as only 23% cumulative mortality was
observed previously using half-sibling families (experiment 1:
April 5–May 7, McCarty et al. 2020). Salinity, temperature, and dis-
solved oxygen were recorded daily with a YSI-85 handheld multi-
meter (YSI Incorporated, Yellow Springs, OH, USA). Feeding was
supplemented daily with Shellfish Diet 1800VR (Reed Mariculture,
Campbell, CA, USA) at 1.5% total dry tissue biomass and with 3 L
of live, cultured phytoplankton from the Horn Point Laboratory
Oyster Hatchery. Individual mortality was assessed daily by
checking for gaping individuals (McCarty et al. 2020), and survival
and day of death were recorded for every individual. Adductor
muscle was sampled and preserved in 95% ethanol when individ-
uals died, and for all individuals remaining alive at the end of the
experiment.

Library preparation, sequence mapping, and SNP
filtering
Four families (11, 43, 22, and 65) were chosen for downstream
analysis because they had the largest sample size per family and
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had the largest range in mortality across the 36-day challenge pe-
riod (i.e., individual death occurred over many experimental
days). A total of 132, 114, 111, and 106 individuals were analyzed
for families 11, 43, 22, and 65, respectively. DNA was extracted
from a total of 471 tissue samples, 463 samples from the chal-
lenge individuals plus the dams and sires of the four F2 families,
using the E.Z.N.A Tissue Extraction Kit (Omega Bio-tek, Norcoss,
GA, USA) following the protocol for preserved animal tissue.
Following extraction, DNA concentration was quantified for each
sample using a Qubit Fluorometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Genome-wide SNPs were generated using
double digest restriction association DNA (ddRAD) sequencing
techniques outlined by Peterson et al. (2012). Following digestion
with EcoRI and SphI (the “flex-set”), barcoded adapters (1–48)
were ligated to each individual separately in a microplate format.
Barcoded samples were pooled, and size selection was performed
using Agencourt AMPure XP beads (Beckman Coulter Life
Sciences, Indianapolis, IN, USA) to select fragments 300–800 bp in
length. Size-selected libraries were amplified using the Phusion
High-Fidelity PCR Kit (New England BioLabs, Ipswich, MA, USA)
and run for 10–12 cycles with a specific indexed primer appropri-
ate for standard Illumina multiplexed paired-end sequencing.
Three total libraries were sent to GeneWiz (South Plainfield, NJ,
USA) for next-generation single-index sequencing on three
Illumina HiSeq 2 � 150 bp sequencing lanes with 15% PhiX spike-
in. For each F2 family, 5% of the individuals were duplicated to
calculate genotype error rate at each locus. GeneWiz demulti-
plexed libraries based on Illumina indexes, and libraries were fur-
ther demultiplexed into individual barcoded libraries and
renamed using process_radtags from the Ddocent pipeline (Puritz
et al. 2014). All reads from all individuals in the four F2 families
were grouped together for downstream analysis.

Reads were trimmed and aligned to the eastern oyster
reference genome C_virginica-3.0 (GenBank accession GCA_00202
2765.4; Gómez-Chiarri et al. 2015) using the dDocent pipeline with
parameters A (match score), B (mismatch score), and O (gap
penalty) set to 1, 3, and 5 respectively, which have proven to be
more appropriate for marine species (Puritz et al. 2014; Dimens
et al. 2019). After alignment, FreeBayes (version 1.2.0-dirty,
Garrison and Marth 2012) was used for SNP discovery and
genotype calling, and SNPs were filtered following the dDocent
step-wise filtering pipeline for missing data, genotype depth,
locus quality score, minor allele frequency (MAF), and genotype
call depth (Puritz et al. 2014). Individuals with more than 50%
missing data were removed, and retained SNPs were present in
90% of individuals, had a minimum read depth of 20 sequences
per genotype, a minimum sequence quality score of 30, and a
minimum MAF of 0.05. dDocent_filters were used to further filter
SNPs based on allele balance, quality/depth ratio, mapping qual-
ity ratio of reference and alternate alleles, properly paired status,
strand representation, and maximum depth using suggested
parameters. Polymorphisms were decomposed and indels were
removed using vcfallelicprimitives. Finally, SNPs were tested for
Hardy-Weinberg equilibrium, and SNPs falling below a P-value of
0.001 in 25% or more of the population were removed. Parents for
one of the families (22) had substantial missing genotype data, so
the initial individual missingness filter threshold was relaxed for
this family only (individuals with <65% missingness retained).
All subsequent filtering steps were identical between family 22
and the other families (e.g., SNP call rate >90%, allelic imbalance,
max depth, paired status, and so on). The combined LD analysis
(all families combined) was performed on the dataset with initial
missingness set at <50% (see below). Genotype error rate (%) was

calculated for 21 DNA samples with duplicate RAD library preps
(same DNA different barcode) as the cumulative number of mis-
matches between duplicate genotypes at each SNP divided by the
total number of genotypes tested, not including SNPs that had
missing data (no genotype call) for either duplicate.

Linkage map creation, QTL mapping, and
combined LD analysis
Linkage maps were created for each of the four F2 families inde-
pendently, and phase information was estimated in OneMap fol-
lowing the Outcrossing Populations tutorial (“OneMap” version
2.1.3; Margarido et al. 2007). The package “vcfR” was used to load
the raw, filtered SNP file (.vcf) into R for each family before link-
age map construction (“vcfR” version 1.9.0; Knaus and Grünwald
2017). For each family, redundant markers and markers with seg-
regation distortion (a< 0.05 after Bonferroni correction) were re-
moved before map building, and only markers present in 90% of
the individuals were used. Markers were assigned to linkage
groups according to chromosome information from the eastern
oyster genome (10 chromosomes, Gómez-Chiarri et al. 2015). We
thinned each linkage group to 50–100 markers to make mapping
easier (i.e., less computation) and because an excessive number
of markers are not needed given the architecture of the F2 fami-
lies (i.e., high linkage between markers). Markers were then or-
dered sequentially according to their location in the genome and
phase information was generated using the “map()” function
(Margarido et al. 2007). A final linkage map was created for each
family with linkage groups in correct chromosome order, and the
OneMap file outputs were converted to R/qtl format using the
OneMap-to-Rqtl-4waycross script (https://github.com/lexymc
carty/OneMap-to-Rqtl-4waycross).

QTL mapping was performed in R/qtl for each family indepen-
dently (version 1.44-9; Broman et al. 2003). Individuals with identical
genotypes (>90% identical markers) were identified and one indi-
vidual from each pair was omitted. Markers with identical geno-
types (duplicate markers) and markers with segregation distortion
[Chi-Square P< 0.001] were also removed. Conditional genotype
probabilities were calculated (“calc.genoprob”) for each family and a
two-part single-QTL model (model¼“2part”) was used for phenotype
day to death for families 11, 22, and 43 since the phenotype spikes
at day 50, representing individuals that survived the low salinity
challenge (Broman 2003). In this scenario, we first consider the bi-
nary trait where an individual with QTL genotype g has probability
pg of having the nonzero phenotype (mortality in the low salinity
challenge). If the individual has the nonzero value (mortality), the
value is assumed to be normally distributed with mean day to
death (mg) and standard deviation (r) (Broman 2003). Therefore, we
log-transformed the day to death phenotype to follow a normal dis-
tribution. All 2-part QTL models were run with 1000 permutations
to determine the 5% significance threshold at the genome-wide
level. For family 65, a one-dimensional genome scan was performed
with a single-QTL model (“scanone” module) for day to death since
all individuals died. Significant QTL were incorporated into a model
(“fitqtl” module) to investigate the effect of each QTL on the two
traits of interest, survival and day to death, for each family since ef-
fect models cannot be fit for 2-part single-QTL models. Finally,
“refineqtl” was used to refine the estimated location of QTLs and
“fitqtl” was performed on the refined locations to investigate model
improvement.

LD analysis was performed on the filtered SNPs from a total of
372 individuals across the four families in TASSEL (version 5.2.57,
Bradbury et al. 2007). The genotype table was filtered for sites
with a minimum MAF of 0.05, maximum frequency of 1, and for
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sites present in at least 150 individuals (Bradbury et al. 2007).
Population structure was analyzed using analysis of principle
components (PCA; see Results 3.4 Figure 3). Within TASSEL, geno-
types from the filtered table were converted to numbers, where
the homozygous major genotype is coded as 1, homozygous mi-
nor is 0, and heterozygous is 0.5. Missing values were then im-
puted using Euclidean distance and the 5 nearest neighbors
(Bradbury et al. 2007). Once all missing values were imputed, a
PCA was conducted on the imputed genotype table (Price et al.
2006). A kinship matrix using Centered_IBS was calculated from
the filtered genotype table to generate pairwise relatedness coef-
ficients for each marker (K matrix) (Bradbury et al. 2007).

Combined LD analysis was performed using a mixed linear
model (MLM) in TASSEL with the four generated files: the pheno-
type file filtered for the trait of interest (day to death or survival),
the combined filtered genotype table, the first 10 components of
the PCA (from TASSEL, explaining 59% of the variation), and the
kinship matrix (K) (Bradbury et al. 2007; Lu et al. 2010):

Phenotypic trait ¼ Marker effectþ PCA components þ K
þ residual

Both the PCA and K matrix were used to minimize spurious
associations (Lu et al. 2010). Two total MLMs were conducted, one
for each of the two traits (day to death and survival). Significant
thresholds were determined for each model using the Bonferroni
correction: a/N, where a is the significance level of 0.05 and N is
the total number of effective tests (determined using “simple”
method) to account for any LD between SNPs (Benjamini and
Hochberg 1995; Gao et al. 2008, 2010). Manhattan plots were cre-
ated for each trait using the “qqman” package in R (version 0.1.4;
Turner 2018). All significant QTLs from the QTL mapping and
combined LD analyses were located in the eastern oyster refer-
ence genome C_virginica-3.0 (GenBank accession GCA_00202
2765.4; Gómez-Chiarri et al. 2015). Each gene, or gene closest to
each significant SNP, was investigated for annotation and func-
tion using the NCBI Genome Data Viewer, and corresponding GO
terms were queried for each gene/protein sequence (Johnson and
Kelly 2020). R version 3.6.1 was used for all necessary analyses (R
Core Development Team 2020).

Genomic prediction and trait correlation
The filtered SNP file used in the combined LD analysis was used to
estimate genomic prediction accuracies using Bayesian linear
regressions in the statistical package BGLR (version 1.0.8; Pérez and
de los Campos, 2014). The genotype file was read into R using the
BEDMatrix package (version 2.0.3; Grueneberg and de los Campos
2019) and missing genotypes were imputed using knncatimpute in
the “scrime” package using the 4 closest neighbors (version 1.3.5;
Schwender 2012). Once imputed, genotypes were recoded into BGLR
format (AA ¼ 0, Aa ¼ 1, aa ¼ 2) and marker effects were estimated
using Bayesian Ridge Regression (BRR) and the BayesB prior for both
traits: survival was modeled as a binary trait and day to death was
modeled as a censored trait with a minimum value of 0 and a maxi-
mum value of 36. The accuracy of marker selection was assessed
by randomly splitting individuals into five testing (20%) and training
(80%) sets for cross-validation, and phenotypes of the testing indi-
viduals were coded as missing in the training set. This process was
repeated five times for each trait and each prior. Realized prediction
accuracy was calculated as the correlation between the predicted
marker values of the testing set and the actual phenotypes divided
by the square root of the trait heritability when all phenotypic data
is included.

Genomic estimated breeding values (GEBVs) for both traits
were estimated in BGLR following the model below:

yi ¼ uþ Zibi þ ei

where y is the observed phenotype (either survival or day to
death) of the individual, u is the average population phenotype, Zi

is the marker-derived matrix of genetic relatedness between indi-
viduals (GRM), bi is the vector of SNP effects, and ei is a vector of
residual error. Both trait models were fit using a Bayesian
Reproducing Kernel Hilbert Spaces Regression (RKHS), but sur-
vival was fit with a logit link function because it is a binary trait.
Models were assessed by creating five random 20%/80% testing/
training validation sets, which was repeated 10 times. Narrow-
sense heritability (h2) was estimated as the additive genetic vari-
ance from the GRM over the total phenotypic variance (including
both the GRM and residual variance), as follows:

h2 ¼ r2
a=r

2
p

where ra is the additive genetic variance from the GRM, and rp is
the total phenotypic variance, which is the sum of the additive
(r2

a) and residual (r2
e) variance. For survival, the residual vari-

ance is fixed at 1, so the heritability becomes:

h2 ¼ r2
a=r

2
a þ 1

Five independent models were run to estimate heritability for
each trait, and the average of the five estimates is reported.
Number of iterations, burn in, and thinning parameters were de-
termined by assessing the convergence and autocorrelation for
all models using the “coda” package in R (version 0.19-3;
Plummer et al. 2006; de Villemereuil 2012). All models were run
for 2.5 million iterations with a thin of 1000 after a burnin of
500,000 for both traits. For both day to death and survival, BayesB
and RKHS models were rerun with the same parameters above,
but after removing all SNPs within the significant region on chro-
mosome 1 (21,800,000–32,800,000 base pairs), leaving a total of
27,273 SNPs. Realized accuracies were estimated using the same
validation scheme as above. To test the effect of SNP thinning on
GS prediction accuracy, we created randomly thinned datasets
consisting of 25,000, 20,000, 15,000, 10,000, 5000, 1000, 500, 250,
100, 50, 25, 10, and 2 markers, with three random replicates of
each thinned marker dataset. We estimated the realized predic-
tion accuracy for each thinned dataset using a 20%/80% testing/
training cross-validation scheme as described above using RKHS
and BayesB models. Thinned datasets of 25,000, 20,000, 15,000,
and 5000 were omitted for the BayesB models due to computa-
tional effort and because the accuracies did not decrease during
these intervals. The genetic correlation between the two low sa-
linity challenge traits, survival and day to death, was assessed
using a bivariate animal model implemented in ASReml-R using
the genotype-derived relationship matrix (Gilmour et al. 2015).

Results
Survival during the acute low salinity challenge
The acute low salinity challenge (2.2) induced mortality in all
four F2 families over the 36-day challenge period. 92%, 82%,
90%, and 100% of oysters died from family 22, 11, 43, and 65, re-
spectively. Most of the mortality during the experiment (310
oysters, 80%) occurred from days 9 to 21 of the challenge, with
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peak mortality occurring on day 11 with 53 total dead oysters
(Figure 1). Peak mortality occurred on day 11 for family 22 (14
oysters, 14%) and 65 (23 oysters, 23%), on day 14 for family 11
(16 oysters, 15%), and on day 17 for family 43 (11 oysters, 14%).
All families had individuals remaining alive after the challenge
except for family 65.

Sequencing results
All libraries yielded high-quality read data, with >93%, >70%,
and >94% of raw reads retained after demultiplexing library 1, 2,
and 3, respectively, which resulted in discovery of 4,092,824 SNPs
for 489 individuals from the four F2 families. The total number of
SNPs was significantly reduced after filtering, and the majority of
SNPs were removed when filtering for SNPs present in 90%
of individuals, a minimum quality score of 30, minor allele count
of 3, MAF of 0.05, and a minimum average depth of 20 reads. A to-
tal of 28,638 SNPs across 399 individuals remained after applying
filters. Mean read depth per site, after accounting for the number
of individuals in each group, was 73 and average missingness for
each individual was 3.4%. Duplicated samples had an average ge-
notype error rate of 1.97% across all individuals (all families) and
within-family error rates ranged from 1.07% (family 22) to 2.74%
(family 11).

Linkage map construction and QTL mapping
Final linkage maps were created from 123, 100, 91, and 95 individ-
uals using a total of 380, 288, 370, and 400 genotyped markers (af-
ter thinning to 50–100 SNPs per chromosome), for family 11, 43,
22, and 65, respectively. A significant QTL on chromosome 1 was
identified by the 2-part model (day to death conditional on sur-
vival) for family 11 and 43 (Figure 2). All significant markers were
located between 21,000,000 and 26,000,000 base pairs on chromo-
some 1 (Table 1). For Family 11, a significant QTL for the 2-part
model (day to death conditional on survival; red line, Figure 2)
was located in the uncharacterized LOC111116948 gene on Chr1
in the eastern oyster genome. After incorporating this QTL into
a single-QTL model for day to death and after refining the posi-
tion, the QTL was located in the E3 ubiquitin-protein ligase
UBR5-like gene (Table 1) and explained 10.4% of the model vari-
ation, but was not above the LOD significance threshold at the
genome-wide level. When this QTL was incorporated into
the single-QTL model for survival and after position refinement,
the QTL was located in the uncharacterized LOC111128605 gene

and explained 10.5% of the model variation, but was not above
the significance threshold (Table 1). This QTL, before refining,
was just below the LOD significance threshold for the probabil-
ity of surviving from the 2-part model (0.5 below; black line,
Figure 2).

For family 43, the QTL region on chromosome 1 was signifi-
cant for day to death conditional on survival (red line), the proba-
bility of survival (black line), and mean day to death (gray line,
Figure 2). This significant QTL was located in the nuclear receptor
coactivator 2-like gene in the eastern oyster genome. After incor-
poration into the single-QTL model for day to death and following
refinement, this QTL was above the LOD significance threshold
and explained 50.55% of the single-QTL model variation (Table 1).
After position refinement, the QTL was located in the solute car-
rier organic anion transporter family member 4A1-like gene
(Table 1). When incorporated into the single-QTL model for sur-
vival and after position refinement, the QTL was still located in
the nuclear receptor coactivator 2-like gene, explained 32.08% of
the model variation, and was above the LOD significance thresh-
old (Table 1). There were no QTL above the significance threshold
for families 22 and 65.

Combined LD analyses
For the MLMs, the first 10 PCAs (explaining 59% of the variation)
were incorporated to account for population structure. When
looking at the scree plot of variance explained for each principal
component, there was a severe drop after PCA component 3
(Figure 3, A and B). Four distinct populations clustered when plot-
ting PCA components, which represents the four F2 families. The
population structure completely disappeared when plotting com-
ponents 6 and 7 (Figure 3, C and D). The scree plot suggests incor-
porating the first 3 components, while the clustering approach
suggests incorporating the first 4. Therefore, we decided to con-
servatively incorporate the first 10 PCAs, accounting for �59% of
the variation, into the GLMs to account for population structure
in our samples.

The combined LD analysis on a total of 28,502 SNPs identified
regions on chromosomes 1 and 7 significantly associated with
both survival and day to death. There were a total of 87 and 46
SNPs for survival and day to death, respectively, that were
above the significance threshold of 1.95 � 10�6 after correcting
for the number of effective tests (0.05/25,685 effective tests;
Supplementary Table S1; Gao et al. 2008, 2010; Yoav and
Hochberg 1995). The same 41 SNPs were significant for both day
to death and survival, and an additional 5 and 46 SNPs were ex-
clusively significant for day to death and survival, respectively
(Supplementary Table S1). Models for both traits revealed a sig-
nificant peak on chromosome 1 from 21,800,000 to 28,600,000
base pairs, as well as a significant SNP on chromosome 7 at base
pair 7,251,580 (significance threshold ¼ �log(1.95 � 10�6), Figure 4,
A and C).

Comparing between traits (survival and day to death), significant
SNPs were located in a total of 16 characterized genes, seven of
which were shared between the two traits (Table 2). For the survival
MLM, the most significant SNP (chromosome 1, base pair
23,957,309) was not located in a gene, but the next most significant
SNP was located in the ATP-dependent 6-phosphofructokinase-like
gene with an R2 value of 0.128 (Supplementary Table S1, Table 2,
bold). The most significant SNP (chromosome 1, base pair
25,724,354) from the day to death MLM was also located outside of
a gene, but the next most significant SNP was located in the metal-
loproteinase inhibitor 3-like gene and had an R2 value of 0.145
(Supplementary Table S1, Table 2, underline). Including all SNPs
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Figure 1. Number dead for each of the four F2 families over the 36-day
acute low salinity (2.2) challenge. N¼ 132, 111, 114, and 106 for families
11, 22, 43, and 65, respectively.
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within the significant QTL peak on chromosome 1 and the single
significant SNP on chromosome 7 accounted for 8.97 and 6.51 of the
total model variation (R2) for survival and day to death, respectively
(Table 2). When grouping the 16 identified genes by their predicted
function, 31% (5 genes) had functions related to DNA/RNA function

and repair: coiled-coil domain-containing protein 13-like, E3
ubiquitin-protein ligase UBR5-like, nuclear receptor coactivator
2-like, nucleolar MIF4G domain-containing protein 1-like, and rho
GTPase-activating protein 190-like. Another 44% (7 genes) had
functions related to ion binding and membrane transport:

Figure 2. LOD plots for QTL identified from the 2-part model, day to death conditional on survival, for family 11 (top left), 43 (bottom left), and 22 (top
right). LOD plot in the bottom right shows the QTL identified from the single-QTL scan for day to death for family 65. For the 2-part models, red lines
indicate the QTL associated with mean day to death conditional on the probability of survival (LODpm), black lines represent QTL associated with the
probability of survival (LODp), and gray lines indicate QTL associated with mean day to death (LODm). Horizontal, dotted lines indicate the 5%
significance threshold at the genome-wide level after 1000 permutations for each respective test (by color).

A B

DC

Figure 3. Scree plot showing the percent variance explained by (A) all 372 PCA components and (B) the first 40 components. PCA plots showing (C)
population structure when plotting the first two components against each other (k¼ 4), and (D) the lack of structure when components 6 and 7 are
plotted.
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cadherin-23-like, gamma-aminobutyric acid type B receptor subunit
2-like, metalloproteinase inhibitor 3-like, monocarboxylate
transporter 14-like, solute carrier organic anion transporter family
member 4A1-like, transient receptor potential cation channel sub-
family M member 1-like, and zinc transporter 2-like. The remaining
25% (4 genes) had other predicted functions, such as lipid synthesis
and transport and response to oxidative stress: ATP-dependent 6-
phosphofructokinase-like, oxidation resistance protein 1-like, ex-
tended synaptotagmin-2-like, choline/ethanolaminephosphotrans-
ferase 1-like (Table 2).

Genomic prediction, heritability, and trait
correlation
Realized prediction accuracies including all SNPs ranged from
0.489 to 0.547 and 0.507 to 0.57 for day to death and survival,

respectively (Figure 5). Realized accuracies for both traits were
highest for the marker models with the BayesB prior, followed by
BRR and RKHS (Table 3). For both traits, removing significant
SNPs on chromosome 1 resulted in only a small reduction in ac-
curacy values for both RKHS and BayesB, and the reduction was
largest for both traits using BayesB. After removing SNPs on chro-
mosome 1, accuracies for survival decreased by 0.056 and 0.1 for
RKHS and BayesB, respectively, and accuracies for day to death
decreased by 0.029 and 0.12 for RKHS and BayesB, respectively
(Figure 5 and Table 3).

Realized prediction accuracies decreased when the number of
SNP markers used was reduced (thinned) to below 250. For exam-
ple, realized accuracy dropped to 0.43 and 0.39 for RKHS and
BayesB, respectively, when models were run with 100 markers
(Supplementary Figure S1).

Figure 4. Combined LD analysis of survival (A,B) and day to death (1–36 days, C,D) for the four recombinant families exposed to acute low salinity (2.2)
for 36 days. QQ plots (right) and Manhattan plots (left) depicting �log10(p) values from the combined LD analysis for genome-wide SNPs and survival (A)
and day to death (B). Blue horizontal lines in Manhattan plots represent significance threshold after correcting for multiple tests.

Table 1. Significant QTL (above the LOD threshold) identified from the 2-part scans incorporated into independent models (“fitqtl”) for
both day to death and survival for families 11 and 43. Significant markers were refined for position (“refineqtl”) and then incorporated
into each model to get percent variance (% Var) explained and a model significance value (P-value). Family 22 and 65 are excluded
because there were no peaks above the LOD threshold.

Family Trait Chr Position (bp) % Var. P-value (v2) LOD score Gene

11 Day 1 21,875,299 10.4 0.0136 2.316 E3 ubiquitin-protein ligase UBR5-like
Survival 1 25,149,524 10.5 0.004 2.915 Uncharacterized LOC111128605a

43 Day 1 21,924,061 50.55 <0.001 9.32b Solute carrier organic anion transporter
family member 4A1-like

Survival 1 25,873,768 32.08 0.001 7.979b Nuclear receptor coactivator 2-like

a Gene located closest to the significant QTL.
b Above LOD threshold determined by single-QTL models (“scanone”).
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Narrow-sense heritability estimates were moderate to high for
both traits. The heritability estimate for day to death was 0.406
(confidence interval (CI): 0.231–0.595), which is slightly lower
than the estimate for survival, 0.539 (CI: 0.326–0.750). The genetic
correlation between the two low salinity challenge traits, survival
and day to death, was large and significant, 0.867 6 0.027.

Discussion
An experimental challenge at extreme low salinity (salinity < 3)
was conducted with four F2 eastern oyster families to examine
the genetic basis of extreme low salinity survival. QTL mapping
and combined LD analysis using genome-wide SNPs revealed

significant QTL on chromosomes 1 and 7 for both traits, survival

and day to death. Genes within, or proximal to, identified QTL

had functions related to DNA/RNA function and repair, ion bind-

ing and membrane transport, and in the response to stress.

Genomic prediction accuracies (0.48–0.57) suggest that GS is a vi-

able option for improving survival in acute low salinity for the

eastern oyster, at least based on this dataset. However, future

studies with a more appropriate experimental design are neces-

sary. Furthermore, a larger genomic prediction accuracy of the

BayesB regression model, along with the lack of substantial de-

crease in prediction accuracy when removing SNPs within the

significant QTL region on chromosome 1, suggest that survival in

extreme low salinity may be controlled by many genes of small

and potentially unequal effect, as opposed to being controlled by

relatively few major-effect QTL.

QTL and combined LD analyses
QTL mapping and combined LD analysis revealed similar QTL on

chromosome 1 related to both survival and day to death. The

four significant QTL (Table 1) were located within the significant

Table 2. Genes with significant SNPs from the combined LD analysis for both survival and day to death in extreme low salinity.
Chromosome of annotated gene within the genome is included, along with the significant number of SNPs detected within that gene
and their total R2. If the gene was present in both analyses, values for survival and day to death are separated by “j”. Gene where most
significant SNP was located is bolded and underlined for survival and day to death, respectively. Gene function is indicated with either D
(DNA), T (Transport), or O (other).

Trait Annotated gene Chr No. of SNPs R2 Function

Both E3 ubiquitin-protein ligase UBR5-like 1 2 j 2 0.171 j 0.234 D
Metalloproteinase inhibitor 3-like 1 5 j 4 0.583 j 0.584 T
Monocarboxylate transporter 14-like 1 3 j 2 0.350 j 0.275 T
Nuclear receptor coactivator 2-like 1 8 j 5 0.856 j 0.715 D
Nucleolar MIF4G domain-containing protein 1-like 7 1 j 1 0.113 j 0.133 D
Oxidation resistance protein 1-like 1 3 j 1 0.295 j 0.142 O
Rho gtpase-activating protein 190-like 1 2 j 2 0.197 j 0.247 D
Not in a gene 1 25 j 20 2.76 j 2.96
Uncharacterized gene 1 18 j 7 1.67 j 0.974

Survival ATP-dependent 6-phosphofructokinase-like 1 1 0.128 O
Cadherin-23-like 1 2 0.184 T
Choline/ethanolaminephosphotransferase 1-like 1 4 0.388 O
Coiled-coil domain-containing protein 13-like 1 7 0.709 D
Extended synaptotagmin-2-like 1 2 0.172 O
Gamma-aminobutyric acid type B receptor subunit 2-like 1 1 0.087 T
Solute carrier organic anion transporter family member 4A1-like 1 1 0.106 T
Zinc transporter 2-like 1 2 0.205 T

Day to death Transient receptor potential cation channel subfamily M member 1-like 1 2 0.247 T
Total 87 j 46 8.97 j 6.51

0.0

0.2

0.4

0.6

SurvivalDay

R
ea

liz
ed

 A
cc

ur
ac

y

BayesB

BRR

RKHS

Figure 5. Realized genomic prediction accuracies for survival and day
to death in the extreme low salinity challenge. Regression models were
run for both traits including all SNPs and after removing SNPs in the
significant region on chromosome 1 (red outline). Each bar represents
the average value of the 50 and 25 separate 20%/80% cross-validation
sets for RKHS and marker models (BayesB, BRR), respectively, divided by
the square root of the respective estimated heritability value, 0.406 for
day to death and 0.539 for survival. Error bars represent standard error
of the mean.

Table 3. Realized accuracy estimates (6SEM) for survival and day
to death in the acute low salinity challenge. Accuracies were
estimated using a 20%/80% testing/training validation set for all
regression models (RKHS, BRR, or BayesB) using all SNPs (All) and
after removing SNPs in the significant region on chromosome 1
(No Chr1).

Trait Markers Model Realized accuracy (6SE)a

Survival All RKHS 0.507 (0.032)
BRR 0.527 (0.037)
BayesB 0.571 (0.036)

No Chr1 RKHS 0.451 (0.016)
BayesB 0.471 (0.021)

Day to death All RKHS 0.489 (0.020)
BRR 0.535 (0.020)
BayesB 0.547 (0.020)

No Chr1 RKHS 0.460 (0.028)
BayesB 0.428 (0.045)

a Accuracy/� h2; h2 survival ¼ 0.539; h2 day to death ¼ 0.406.
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peak on chromosome 1, from 21,800,000 to 28,600,000 base pairs,
detected by the combined LD analysis. For the combined LD anal-
yses, the SNPs located within the significant QTL on chromosome
1 (87 SNPs for survival and 46 SNPs for day to death) explained a
total of 8.97% and 6.51% of the total variation for survival and
day to death, respectively, with the most significant SNP explain-
ing <0.1% for both traits. For the QTL mapping, a significant QTL
explaining a large portion of the total variation (32% for survival
and 50% for day to death) was detected for only one of the fami-
lies (43) after refinement, and the insignificant QTL (after refine-
ment) detected in family 11 explained 10% of the total variation
for both traits. The relatively small contribution of our detected
(major) QTL from both analyses suggests that many other
markers of relatively small effect will likely have a combined
large effect on the phenotype. Thus, survival in extreme low sa-
linity (<3) may be controlled by additional genes not identified in
this analysis. Aside from one study (Sauvage et al. 2010), most
QTL studies in bivalve shellfish have examined 2 or fewer fami-
lies (Zhan et al. 2009; Guo et al. 2012; Zhong et al. 2014; Wang et al.
2016; Fang et al. 2021).

QTLs of similar magnitude (8%–40% variance explained) iden-
tified for multiple traits in salmonids have been proposed for in-
corporation into MAS programs (Ayllon et al. 2015; Barson et al.
2015; Gonen et al. 2015; Boison et al. 2019), but these QTL were val-
idated across multiple populations. In this study, the significant
QTL identified on chromosome 1 was detected in only two fami-
lies, which happen to be the two largest families analyzed, indi-
cating that these families could be driving the detection of the
QTL in our combined LD analyses. Thus, the QTL require further
validation across other families and populations to determine if
they are generally useful and associated with the trait, or if they
are specific to the genetic background of the F2 families tested.
Our sample size was relatively small (<400) and further analyses
should be conducted on a larger sample size with individuals
from many populations. A sample size larger than 1000 is recom-
mended for higher resolution when detecting QTL (Barrı́a et al.
2018; Houston et al. 2020), and the possibility of conducting a
GWAS of this magnitude is becoming more practical as genomic
tools for the eastern oyster continue to be developed (i.e., SNP ar-
ray; Houston et al. 2020; Thongda et al. 2018).

QTL mapping and combined LD analyses results suggest that
survival and day to death are genetically similar traits. The simi-
larity in the three LOD score curves for the QTL mapping models
(2-part: day to death conditional on survival, survival as binary,
and day to death with a normal distribution) suggest that similar
QTL were identified when analyzing either trait independently.
Similarly, the same major QTL region on chromosome 1 was also
detected in the combined LD analysis for both traits, and 85 sig-
nificant SNPs were shared within the same 6.8 million base pair
region (21,800,000–28,600,000 base pairs). A high genetic correla-
tion was detected between the two traits (0.867 6 0.027), and large
genetic correlations (0.95) have previously been detected for
disease-related survival traits (survival and day to death) in both
salmon and trout (Palti et al. 2015; Barrı́a et al. 2018, 2020; Bassini
et al. 2019). The finding that survival and day to death are geneti-
cally similar suggests that either trait could be used in future as-
sessment of extreme low salinity survival.

Combined LD analysis provided increased resolution and sta-
tistical power because all individuals were analyzed together
(larger sample size). Combined LD analysis was able to detect not
only the significant region on chromosome 1, but also an addi-
tional significant region on chromosome 7. Suggestive peaks for
the combined LD analysis were present just below the

significance threshold on chromosomes 5, 7, 8, and 9, and may
contribute to the overall variation in this trait (Figure 4). In con-
trast, the family-specific QTL analyses did not detect these addi-
tional QTL, but there does seem to be a suggestive QTL on
chromosome 8 for family 22 (Figure 2). Previous studies have also
observed increases in detection ability for combined LD mapping
(Xiong and Jin 2000; Lu et al. 2010). In our scenario, the combined
LD analysis provided the most powerful analysis but is comple-
mented by the independent QTL mapping results.

Functional analysis of QTL and SNPs
For both survival and day to death, the four major QTL and 133
significant SNPs were located within, or proximal to, a total of 16
annotated genes. These genes have functions belonging to three
major categories: DNA/RNA function and repair, ion binding and
membrane transport, and the response to stress. Our results
build upon previous transcriptomic studies of oysters and high-
light potential genes and physiological processes underlying sur-
vival in extreme low salinity (<3).

Five of the 16 QTL-associated genes were annotated with func-
tions related to DNA/RNA function and repair. Four of these
genes (E3 ubiquitin-protein ligase UBR5-like, nuclear receptor
coactivator 2-like, nucleolar MIF4G domain-containing protein 1-
like, and rho GTPase-activating protein 190-like) have functions
related to RNA binding and gene transcription. Previous work ex-
amining the transcriptomic response of eastern oysters to a salin-
ity of 8 and Olympia oysters to a salinity of 5, revealed the
strongest enrichment for genes related to DNA replication and
transcription (Eierman and Hare 2014; Maynard et al. 2018). The
enrichment or detection of genes involved in gene transcription
at low salinity might reflect the importance, and necessity, of in-
creasing transcription of genes responsible for conformation to
stressful low salinities. For example, in eastern oysters, the rho
GTPase-activating protein 190-like gene was previously found to
be enriched at low salinity (salinity 8) and is considered an impor-
tant osmoregulatory candidate (Eierman and Hare 2014). Rho
proteins are also involved in anti-apoptotic processes (reviewed
in Li et al. 2015), and infection of Pacific oyster hemocytes with
vectors expressing the California sea hare (Aplysia californica) rho
gene reduced b-adrenoceptor-induced apoptosis (Lacoste et al.
2002). Upregulation and expression of many antiapoptotic genes
and pathways is a known stress response in oysters (Zhang et al.
2016), and rho GTPase-activating protein 190-like may play
an important role in preventing apoptosis to maintain internal
homeostasis and cell integrity during extreme low salinity expo-
sure.

The majority of genes (7/16) proximal to or underlying QTL
were related to membrane transport and ion binding. Oysters are
osmoconformers that regulate the concentration of inorganic
ions (Naþ, Ca2þ, and Mg2þ) and free amino acids within their cel-
lular fluid to maintain osmotic balance and conform to the salin-
ity of their surrounding environment (Pierce 1971, 1982;
Shumway 1977a, 1977b). SNPs significantly associated with varia-
tion in low salinity survival were detected in cadherin-23-like and
transient receptor potential cation channel subfamily M member
1-like, both of which are transmembrane proteins that play a
role in calcium ion binding and cation channel activity
(Venkatachalam and Montell 2007; Mège and Ishiyama 2017).
Induction of calcium-dependent pathways is a documented re-
sponse to salinity stress in bivalves (Shumway 1977a; Eierman
and Hare 2014; Zhang et al. 2016; Gong et al. 2021), thereby regu-
lating calcium metabolism, transport, and internal fluid osmolal-
ity. In addition, expression of transient receptor proteins are
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known to be indicative of stress (Venkatachalam and Montell
2007), and are specifically involved in the thermal stress response
in both the Pacific and Portuguese oyster (Fu et al. 2021). Zinc
transporter 2-like gene has functions specifically related to zinc
ion binding, and this gene was previously shown to be associated
with osmoregulation in the eastern oyster (Eierman and Hare
2014). A significant SNP was also detected in the metalloprotei-
nase inhibitor 3-like gene, which prevents the breakdown of met-
alloproteins. Metalloenzymes, which are superoxide dismutases
with a bonded metal (Cu/Zn or Mn), are part of the defense sys-
tem against oxidative stress (Rudneva 1999; Park et al. 2009).
These two genes suggest that zinc ion binding plays an important
role in the response to extreme low salinity, and a moderate heri-
tability for zinc ion accumulation in Fujian oysters (Wu et al.
2019) could point to a specific mechanism responsible for the ob-
served variation in survival.

The remaining four genes identified from the genome-wide
analyses had functions related to oxidative stress and protein
regulation. Oxidative stress results from an excess of free radicals
in an organism’s cells in response to an environmental stressor
(Lushchak 2011; reviewed in Rivera-Ingraham and Lignot, 2017),
and expression of antioxidative genes are commonly used to indi-
cate oyster health and stress (Zhang et al. 2016). Therefore, the
significant SNPs detected in the oxidation resistance protein 1-
like gene are not surprising and suggest that extreme low salinity
tolerance could be influenced by genetic variation in oxidative re-
sponse pathways. In addition, maintenance of ion gradients dur-
ing osmoregulation is one of the most ATP-demanding processes
(Hand and Hardewig 1996; Sokolova et al. 2012). Many genes in-
volved in protein regulation were previously found to be signifi-
cantly upregulated in the Pacific oyster after challenge to a low
salinity of 8 (Wang et al. 2012). The identification of SNPs associ-
ated with variation in low salinity tolerance within the ATP-
dependent 6-phosphofructokinase-like gene support the notion
that glycolysis and energy metabolism are likely important in
maintaining cell function during salinity stress.

Genomic selection and heritability
GS prediction accuracies for all models ranged from 0.48 to 0.57
for both traits, which are slightly lower than ranges reported for
production and disease-related traits in other bivalve species. GS
prediction accuracies from GBLUP models for growth-related
traits ranged from 0.54 to 0.67 and from 0.678 to 0.758 for resis-
tance to Ostreid herpesvirus (OsHV-1-lvar) in the Pacific oyster
(Gutierrez et al. 2018, 2020). Prediction accuracies reported in
studies of other bivalves are relatively similar, e.g. 0.63 - 0.7 for
growth related-traits in the Zhikong scallop (Wang et al., 2018)
and 0.4 - 0.79 for morphometric and edibility traits in the
Portuguese oyster (Vu et al. 2021). To our knowledge, there are no
reported genomic prediction accuracies for environmental stress-
related traits in aquaculture species for comparison, but studies
of survival and day to death phenotypes for disease-related traits
in finfish species have reported prediction accuracies as low as
0.21 (reviewed in Houston et al. 2020). Genomic prediction accura-
cies are affected by the underlying trait architecture, LD struc-
ture, relatedness between training and testing sets, marker
density, trait heritability, and sample size (Meuwissen et al. 2001;
Habier et al. 2007; Shengqiang et al. 2009; Daetwyler et al. 2010;
Neves et al. 2012; Dou et al. 2016; Palaiokostas et al. 2019).
Therefore, the lower range of the prediction accuracies estimated
here may be reflective of the underlying trait architecture.

More likely, the slightly lower range of genomic prediction ac-
curacies may be an artifact of the small sample size (372

individuals) used and the relatedness between training and test-
ing sets (only 4 full-sibling families). The prediction accuracies es-
timated for low salinity survival in this study are most similar to
those reported for growth-related traits in Yesso scallops (GBLUP,
BayesB, RRBLUP: 0.3–0.6; Dou et al. 2016), where the authors
assessed a population size of 349 scallops from 5 full-sibling fam-
ilies. Larger prediction accuracies were found for the Pacific oys-
ter, Zhikong scallop, and Portuguese oyster where more families
and larger sample sizes were utilized, e.g., greater than 500 indi-
viduals from at least 23 full or half-sibling families (Gutierrez
et al. 2018, 2020; Wang et al. 2018; Vu et al. 2021). Caution should
be taken when comparing our results to these larger, more com-
prehensive studies, as our experimental design and F2 breeding
structure represent fewer families/populations than are typically
analyzed in GS studies. Future experimentation with a larger
sample size and more populations may increase genomic predic-
tion accuracies, as previous studies have found training popula-
tion size to have a large effect on prediction accuracies (Ehret
et al. 2015; Wang et al. 2018). Nevertheless, the genomic prediction
accuracies estimated here are on par with those in other marine
bivalve studies, and larger than some previously reported accura-
cies for traits in finfish and shrimp species (reviewed in Houston
et al. 2020).

Substantial thinning (reduction) in marker number (100
markers) was required to observe a noticeable reduction in pre-
diction accuracy (0.07 and 0.18 decrease from the full marker
model for RKHS and BayesB models, respectively). This result is
likely a consequence of the F2 breeding design employed.
However, previous studies of marine animals utilizing more fami-
lies and a more appropriate breeding design (i.e., > 20 half or full-
sibling families) have also reported rather subtle decreases in
prediction accuracy (�0.1) when sampling down to hundreds of
markers (Gutierrez et al. 2018, 2020). Overall, these results suggest
that a relatively small number of markers (100 s to a few thou-
sand) may provide adequate genomic prediction accuracies in ex-
perimental marine populations utilizing a family-based design.
However, future work with larger sample sizes and a more appro-
priate breeding design is needed before drawing any major con-
clusions.

For both traits, accuracies were highest for regression models
with the BayesB prior, followed by BRR and RKHS regression mod-
els. Accuracies differed by 0.064 and 0.058 between BayesB and
RKHS models for survival and day to death, respectively, and we
suspect that these differences arise from the weighting of the
markers. For RKHS models, a traditional animal model replaced
by a kernel matrix is executed, which is a matrix of genetic signal
(or similarity) between individuals approximated from genetic
effects (marker genotypes), as opposed to a traditional GBLUP
where the genetic signal is equal to the marker genotypes
(Morota and Gianola 2014; Pérez and de los Campos 2014). In
RKHS models, one variance is shared and divided between all
markers, so each marker is weighted the same and predicted to
have the same minimal effect (Meuwissen et al. 2001). In BRR,
each marker has its own variance, but all are shrunk by the same
shrinking parameter (Pérez and de los Campos 2014). Finally, the
BayesB prior allows for variable selection, specifically size-of-
effect shrinkage, where some markers have a small effect while
the rest have minimal to no effect (Meuwissen et al. 2001; Habier
et al. 2011; Morota and Gianola 2014). The slight superiority in
model performance by the BayesB prior could reflect the underly-
ing nature of the trait, where survival in extreme low salinity is
controlled by a few markers of small effect, such as those on
chromosomes 1 and 7, plus additional markers of minimal effect.
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Similarly, our genomic prediction accuracies decreased only

slightly (0.029–0.12) when removing the significant region on

chromosome 1, further supporting the notion that survival in

extreme low salinity is polygenic in nature, and that regions

other than those identified on chromosome 1 contribute to the

overall trait variation. It is also worth investigating additional

approaches (i.e., GBLUP, BayesA, and BayesC) to ensure we have

the model that best reflects the distribution of marker effects

on our trait. While a Bayesian model (e.g., BayesB, BBR, BayesA,

and BayesC) may fit our trait best, the animal models (GBLUP

and RHKS) are easier to implement with faster run times, and

differences between GBLUP and Bayesian approaches have

proven to be unsubstantial (Zenger et al. 2019; Houston et al.

2020).
The narrow-sense heritability for both survival (h2 ¼ 0.539)

and day to death (h2 ¼ 0.406) were very similar to previously

reported values using a pedigree-derived relationship matrix be-

tween half-sibling families (h2 ffi 0.4, McCarty et al. 2020). Notably,

the heritability estimate for survival was �0.133 larger than the

heritability estimate for day to death. Previous disease-resistance

studies of salmon, red tilapia, and Nile tilapia all reported higher

heritability estimates for threshold traits compared to their linear

model counterpart (Yá~nez et al. 2013; Shoemaker et al. 2017;

Sukhavachana et al. 2019), which was suggested to result from a

better fit of the threshold animal model for the binary trait

(Barrı́a et al. 2018). Moreover, higher narrow sense heritability val-

ues for disease-resistance traits in both Coho salmon and Nile ti-

lapia corresponded to higher genomic prediction accuracies for

these species (Barrı́a et al. 2018, 2020), while lower heritability of

disease resistance traits in the Portuguese oyster (0.1–0.11)

resulted in lower prediction accuracies (0.24–0.3) (Vu et al. 2021).

The correlation between high heritability values and high geno-

mic prediction accuracies could provide an explanation for the

higher genomic prediction accuracies for all survival models in

this study.

Conclusions
Overall, this initial genome-wide analysis indicates that the ge-

netic architecture of survival in low salinity for eastern oysters

may be polygenic in nature, with significant QTL located on east-

ern oyster chromosomes 1 and 7. Moreover, GS appears to be a vi-

able option for improvement of this trait in eastern oysters,

which is encouraging as the implementation of GS continues to

become more feasible for many aquaculture species. These pre-

liminary results require further validation using larger sample

sizes and the inclusion of more families or populations to corrob-

orate detected QTL. Future GWAS experiments will help to eluci-

date the genomic architecture and the genes underlying low

salinity tolerance in oysters, and will ultimately provide more in-

formation about the performance of GS for improving this critical

trait in oysters.
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